Last time: X digital image

\[\pi_1(X; x_0) \text{ - fundamental gp. of digital } \]

\[x : \text{Im} \to X \]

\[\beta : \text{Im} \to X \]

\[\partial \beta \circ \alpha \simeq \beta \circ \alpha \]

so only loops of same length can be homotopic.

Edge groups:

\[E(K; v_0) \]

\[K \text{ simplicial complex} \]

\[V \text{ - vertices of } K \]

\[E \text{ - edges of } K \]

\[\text{(incl. repeats)} \]

Edge path/loop: \[\{v_0, v_1, v_2, \ldots, v_n\} \text{ w/ } v_i \in V. \]

\[s^* \{v_i, v_i\} \in E. \]

\[(\text{or } v_i = v_0) \]

Definition 4.1. By an elementary edge-homotopy (relative the endpoints) we mean one of the following operations on edge paths:

(a) If \(v_i = v_{i+1}, \) for some \(i \) with \(0 \leq i \leq n - 1, \) then replace an edge path \(\{v_0, \ldots, v_i, v_{i+1}, v_{i+2}, \ldots, v_n\} \) with \(\{v_0, \ldots, v_i, v_{i+2}, \ldots, v_n\}. \) Namely, delete a repeated vertex. Or, conversely, for any \(i \) with \(0 \leq i \leq n, \) replace an edge path \(\{v_0, \ldots, v_i, v_{i+1}, \ldots, v_n\} \) with \(\{v_0, \ldots, v_i, v_{i+1}, \ldots, v_n\}. \) Namely, insert a repeat of a vertex.

(b) If \(\{v_{i-1}, v_i, v_{i+1}\} \) form a simplex of \(K, \) for some \(i \) with \(1 \leq i \leq n - 1, \) replace an edge path \(\{v_0, \ldots, v_{i-1}, v_i, v_{i+1}, \ldots, v_n\} \) with \(\{v_0, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n\}. \) Or, conversely, for any \(i \) with \(0 \leq i \leq n - 1, \) replace an edge path \(\{v_0, \ldots, v_i, v_{i+1}, \ldots, v_n\} \) with \(\{v_0, \ldots, v_i, v, v_{i+1}, \ldots, v_n\} \) for any \(v \in V \) for which \(\{v, v, v_{i+1}\} \) form a simplex of \(K. \)
Two edge loops are edge homotopic if and only if there is a finite sequence of (a)'s & (b)'s from $\alpha \sim \beta$.

- equivalence relation on edge loops.

- equivalence class of α is $[\alpha]$.

$E(k, v_0)$ - set of all such is a group.

product: $[\alpha] \cdot [\beta] = [\alpha \cdot \beta]$ if α then β.

inverses: $[\alpha]^{-1} = [\bar{\alpha}]$ reverse loop.

Hence, $E(k, v_0) \cong \prod_{[k, v_0]}$ (topological fundamental group).
Clique complex of a digital image (graph).

X digital image: $c(x)$ - simplicial complex

Simplices \leftrightarrow cliques.

E.g.

X:

$cl(x)$

solid (3-simplex)

Hence

$\pi_1(X; v_0) \cong E(cl(x), v_0)$

$\cong \pi_1(|cl(x)|; v_0)$

(classical result)
Definition 5.1. Consider a set \(C = \{ x_0, x_1, \ldots, x_{n-1} \} \) of \(n \) (distinct) points in \(\mathbb{Z}^m \), with \(n \geq 4 \) and for any \(m \geq 2 \). We say that \(C \) is a circle of length \(n \) if we have adjacencies \(x_i \sim_C x_{i+1} \) for each \(0 \leq i \leq n-2 \), and \(x_{n-1} \sim_C x_0 \), and no other adjacencies amongst the elements of \(C \).

We may parametrize a digital circle as a loop \(\alpha : I_n \to X \) (in various ways).

Theorem 5.2. \(\pi_1(C; x_0) \cong \mathbb{Z} \) for every digital circle \(C \).

Definition 5.4. Suppose \(U \) and \(V \) are digital images in some \(\mathbb{Z}^n \). Denote by \(U' = \{ v \in V \mid v \notin V \cap U \} \) the complement of \(U \) in \(U \cup V \) and by \(V' = \{ u \in U \mid u \notin U \cap V \} \) the complement of \(V \) in \(U \cup V \). We say that \(U \) and \(V \) have disconnected complements (in \(U \cup V \)) if \(U' \) and \(V' \) are disconnected from each other. That is, \(U \) and \(V \) have disconnected complements when the set of pairs \(\{ u, v \} \) with \(u \in V' \), \(v \in U' \) and \(u \sim_{U \cup V} v \) is empty.

Theorem 5.5 (Digital Seifert and Van Kampen). Let \(U \) and \(V \) be digital images in some \(\mathbb{Z}^n \) with connected intersection \(U \cap V \). Choose \(x_0 \in U \cap V \) for the basepoint of \(U \cap V, U, V, \) and \(U \cup V \). If \(U \) and \(V \) have disconnected complements, then

\[
\begin{align*}
p_1(U \cap V; x_0) & \xrightarrow{i_1} p_1(U; x_0) \\
i_2 & \downarrow \\
p_1(V; x_0) & \xrightarrow{\psi_2} p_1(U \cup V; x_0)
\end{align*}
\]

is a pushout diagram of groups and homomorphisms, with \(i_1, i_2, \psi_1 \) and \(\psi_2 \) the homomorphisms of fundamental groups induced by the inclusions \(U \cap V \to U, U \cap V \to V, U \to U \cup V \) and \(V \to U \cup V \) respectively.

\[\text{Ex. If } \pi_1(U \cup V; x_0) \cong \{ e \}, \text{ then }\]

\[
\pi_1(U \cup V; x_0) \cong \pi_1(U; x_0) \ast \pi_1(V; x_0)
\]
We have $\Pi_1(X, x_0) \cong \mathbb{Z}_2$.

Figure 1. Realization of $D \vee D$ in \mathbb{Z}^2

Figure 2. Triangulation of $\mathbb{R}P^2$

Of the 13 points
- $5 = (1, 0, 1, 0, -1, -1, 0, 0)$
- $6 = (1, 1, 0, 0, 0, -1, -1, 0)$
- $7 = (0, 1, -1, -1, 0, 0, -1, 0)$
- $8 = (-1, 1, 0, -1, -1, 0, 0, 0)$
- $9 = (-1, 0, 1, 0, -1, -1, 0, 0)$
- $10 = (-1, -1, 0, 0, 0, -1, -1, 0)$
- $11 = (0, -1, -1, -1, 0, 0, 0, 0)$
- $12 = (1, -1, 0, -1, -1, 0, 0, 0)$
- $13 = (0, 0, 0, 1, 0, -1, -1, 0)$
- $3 = (0, 0, 0, 0, 0, 1, 0, -1)$
- $4 = (0, 0, 0, 0, 0, 0, 1, -1)$