Abstract. Let P and Q be convex polytopes in \mathbb{R}^n. Their Minkowski sum is

$$P + Q = \{ p + q \in \mathbb{R}^n \mid p \in P, q \in Q \},$$

which is again a convex polytope. Below is the Minkowski sum of a triangle and a square.

Notice that the vertices of P and Q in this picture have integer coordinates. Such polytopes are called lattice polytopes. The central object of my talk is the Minkowski length $L(P)$ of a lattice polytope P, which is defined to be the largest number of non-trivial primitive segments whose Minkowski sum lies in P. For example, in the picture above $L(P) = 1$, $L(Q) = 2$, and $L(P + Q) = 3$.

The Minkowski length represents the largest possible number of factors in a factorization of polynomials with exponent vectors in P, and shows up in lower bounds for the minimum distance of toric codes.

I will present some results about Minkowski length which are important when studying the minimum distance of a toric code defined by a 2D or a 3D polytope P.

The 2D results appear in our joint paper with Ivan Soprunov. The 3D results were obtained in last summer’s REU together with Olivia Beckwith, Matthew Grimm, and Bradley Weaver.

* Refreshments at 2:30 PM in RT 1517